3.165 \(\int \sec ^{\frac{5}{2}}(c+d x) (a+a \sec (c+d x)) \, dx\)

Optimal. Leaf size=151 \[ \frac{2 a \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{3 d}+\frac{2 a \sin (c+d x) \sec ^{\frac{5}{2}}(c+d x)}{5 d}+\frac{2 a \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{3 d}+\frac{6 a \sin (c+d x) \sqrt{\sec (c+d x)}}{5 d}-\frac{6 a \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d} \]

[Out]

(-6*a*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (2*a*Sqrt[Cos[c + d*x]]*Ellipti
cF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (6*a*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(5*d) + (2*a*Sec[c + d*x]
^(3/2)*Sin[c + d*x])/(3*d) + (2*a*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(5*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0905414, antiderivative size = 151, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 5, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.238, Rules used = {3787, 3768, 3771, 2641, 2639} \[ \frac{2 a \sin (c+d x) \sec ^{\frac{5}{2}}(c+d x)}{5 d}+\frac{2 a \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{3 d}+\frac{6 a \sin (c+d x) \sqrt{\sec (c+d x)}}{5 d}+\frac{2 a \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}-\frac{6 a \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^(5/2)*(a + a*Sec[c + d*x]),x]

[Out]

(-6*a*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (2*a*Sqrt[Cos[c + d*x]]*Ellipti
cF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (6*a*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(5*d) + (2*a*Sec[c + d*x]
^(3/2)*Sin[c + d*x])/(3*d) + (2*a*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(5*d)

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \sec ^{\frac{5}{2}}(c+d x) (a+a \sec (c+d x)) \, dx &=a \int \sec ^{\frac{5}{2}}(c+d x) \, dx+a \int \sec ^{\frac{7}{2}}(c+d x) \, dx\\ &=\frac{2 a \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac{2 a \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac{1}{3} a \int \sqrt{\sec (c+d x)} \, dx+\frac{1}{5} (3 a) \int \sec ^{\frac{3}{2}}(c+d x) \, dx\\ &=\frac{6 a \sqrt{\sec (c+d x)} \sin (c+d x)}{5 d}+\frac{2 a \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac{2 a \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{5 d}-\frac{1}{5} (3 a) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx+\frac{1}{3} \left (a \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{2 a \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 d}+\frac{6 a \sqrt{\sec (c+d x)} \sin (c+d x)}{5 d}+\frac{2 a \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac{2 a \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{5 d}-\frac{1}{5} \left (3 a \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=-\frac{6 a \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{5 d}+\frac{2 a \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 d}+\frac{6 a \sqrt{\sec (c+d x)} \sin (c+d x)}{5 d}+\frac{2 a \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac{2 a \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{5 d}\\ \end{align*}

Mathematica [A]  time = 0.228212, size = 115, normalized size = 0.76 \[ \frac{a \sec ^2\left (\frac{1}{2} (c+d x)\right ) (\sec (c+d x)+1) \left (5 \sqrt{\cos (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )+9 \sin (c+d x)+5 \tan (c+d x)-9 \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )+3 \tan (c+d x) \sec (c+d x)\right )}{15 d \sqrt{\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^(5/2)*(a + a*Sec[c + d*x]),x]

[Out]

(a*Sec[(c + d*x)/2]^2*(1 + Sec[c + d*x])*(-9*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + 5*Sqrt[Cos[c + d*x
]]*EllipticF[(c + d*x)/2, 2] + 9*Sin[c + d*x] + 5*Tan[c + d*x] + 3*Sec[c + d*x]*Tan[c + d*x]))/(15*d*Sqrt[Sec[
c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 2.175, size = 384, normalized size = 2.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(5/2)*(a+a*sec(d*x+c)),x)

[Out]

-a*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-1/10*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^
4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^3-12/5*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)/(-(-2*
cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)+28/15*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^
2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-6/5*(sin
(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2
)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-1/3*cos(1/2*d*x+1/2*c)*(-2*sin
(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+
1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \sec \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac{5}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)*(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)*sec(d*x + c)^(5/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (a \sec \left (d x + c\right )^{3} + a \sec \left (d x + c\right )^{2}\right )} \sqrt{\sec \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)*(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

integral((a*sec(d*x + c)^3 + a*sec(d*x + c)^2)*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(5/2)*(a+a*sec(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \sec \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac{5}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)*(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)*sec(d*x + c)^(5/2), x)